콘텐츠로 바로가기
메뉴
  • 환경
    • 환경 뉴스
    • 환경 칼럼
  • 에너지전환
    • 에너지전환 뉴스
    • 에너지전환 칼럼
  • 과학·학술
    • 과학·학술 뉴스
    • 과학·학술 칼럼
    • 지속가능성 개념어 사전
  • 장회익의 자연철학
    • 자연철학 이야기 대담
    • 책
    • 논문
    • 칼럼, 강의, 강연
  • 공부모임
    • 녹색문명공부모임
    • 새 자연철학 세미나
  • 게시판
    • 새 자연철학세미나 게시판
    • 녹색문명공부모임 게시판
    • 녹색 책/영화클럽 게시판
    • 뉴스레터
  • 일정
  • Log In
    • Register
  • 검색
  • 환경
    • 환경 뉴스
    • 환경 칼럼
  • 에너지전환
    • 에너지전환 뉴스
    • 에너지전환 칼럼
  • 과학·학술
    • 과학·학술 뉴스
    • 과학·학술 칼럼
    • 지속가능성 개념어 사전
  • 장회익의 자연철학
    • 자연철학 이야기 대담
    • 책
    • 논문
    • 칼럼, 강의, 강연
  • 공부모임
    • 녹색문명공부모임
    • 새 자연철학 세미나
  • 게시판
    • 새 자연철학세미나 게시판
    • 녹색문명공부모임 게시판
    • 녹색 책/영화클럽 게시판
    • 뉴스레터
  • 일정
  • Log In
    • Register

녹색아카데미

더 나은 앎으로 푸른 미래를 가꾸는 사람들의 공부모임

새 자연철학 세미나

열평형이거나 열평형이 아닌 두 물체의 접촉

자료
통계역학
작성자
자연사랑
작성일
2022-06-03 11:19
조회
2753

[장회익의 자연철학 강의] 277쪽에 있는 내용을 조금 더 설명할 필요가 있어 보입니다. 이를 위해 아래의 책을 참조했습니다.

L.D. Landau, E.M. Lifshitz. Statistical Physics. pp. 34-35. (링크 클릭)

두 물체가 열평형을 이루고 있을 때 엔트로피와 에너지의 관계를 살펴봅니다. 열역학 둘째 법칙이 옳다면, 두 물체로 이루어진 전체계가 고립계일 때 엔트로피는 최대가 되어야 합니다. 한편 전체계의 에너지는 두 부분계의 에너지의 합입니다. 즉 $$E = E_1 + E_2$$입니다. 열역학 첫째 법칙에 따르면 $E$는 상수입니다. 엔트로피는 에너지의 함수로 주어며, 전체계의 엔트로피는 $$S=S_1 (E_1) +S_2 (E_2)$$입니다. $E_2 = E - E_1$이며 $E$는 상수이므로, 실상은 독립변수가 $E_1$ 하나뿐이라고 해도 됩니다. 엔트로피가 최대가 되는 조건은 다음과 같습니다. (최대일 때 도함수가 0) $$ \frac{\mathrm{d}S}{\mathrm{d}E_1}=\frac{\mathrm{d}S_1}{\mathrm{d}E_1} + \frac{\mathrm{d}S_2}{\mathrm{d}E_2} \frac{\mathrm{d}E_2}{\mathrm{d}E_1} =\frac{\mathrm{d}S_1}{\mathrm{d}E_1} - \frac{\mathrm{d}S_2}{\mathrm{d}E_2} = 0$$ 따라서 두 물체가 열평형을 이룰 조건은 $$\frac{\mathrm{d}S_1}{\mathrm{d}E_1} = \frac{\mathrm{d}S_2}{\mathrm{d}E_2}$$입니다. 절대온도를 $$\frac{\mathrm{d}S}{\mathrm{d}E} = \frac{1}{T}$$로 정의하면, 위의 조건은 곧 $$T_1 = T_2$$에 해당합니다. 

이제 두 물체가 닫힌 계를 이루지만 열평형은 아닌 경우를 생각합니다. 가령 뜨거운 냄비를 손으로 만질 때와 같은 상황입니다. 그 물체의 온도를 각각 $T_1$, $T_2$라 부를 때, $T_1 \neq T_2$이라 합니다. 시간이 점차 흐르면 두 물체의 온도는 점차 같아질 겁니다. 이 때 엔트로피의 합 $S=S_1 + S_2$는 증가해야 합니다. 따라서 그 도함수는 양수이어야 합니다. 즉 $$\frac{\mathrm{d}S}{\mathrm{d}t}=\frac{\mathrm{d}S_1}{\mathrm{d}t}+\frac{\mathrm{d}S_2}{\mathrm{d}t} = \frac{\mathrm{d}S_1}{\mathrm{d}E_1} \frac{\mathrm{d}E_1}{\mathrm{d}t} + \frac{\mathrm{d}S_2}{\mathrm{d}E_2} \frac{\mathrm{d}E_2}{\mathrm{d}t} > 0$$ 그런데 전체 에너지는 보존되므로 $$ \frac{\mathrm{d}E_1}{\mathrm{d}t} + \frac{\mathrm{d}E_2}{\mathrm{d}t}=0$$이고, 따라서 $$\frac{\mathrm{d}S}{\mathrm{d}t}=\left(\frac{\mathrm{d}S_1}{\mathrm{d}E_1} - \frac{\mathrm{d}S_2}{\mathrm{d}E_2} \right) \frac{\mathrm{d}E_1}{\mathrm{d}t} = \left( \frac{1}{T_1} - \frac{1}{T_2}\right)\frac{\mathrm{d}E_1}{\mathrm{d}t}>0$$을 얻습니다.

만일 $T_1 < T_2$라 하면, $$\frac{\mathrm{d}E_1}{\mathrm{d}t}>0 , \quad \frac{\mathrm{d}E_2}{\mathrm{d}t}<0$$입니다. 즉 시간이 지남에 따라 1번 계의 에너지는 늘어나고 2번 계의 에너지는 줄어듭니다. 

[장회익의 자연철학 강의] 277쪽에 "... 에너지가 내 손으로 들어오면 전체 엔트로피는 증가할 상황이니 자연 계는 이 방향의 에너지 흐름을 일으키려 할 것이다."라고 쓰인 구절이 바로 이 내용입니다. 결국 온도라는 것은 에너지의 흐름에 비해 엔트로피가 얼마만큼 늘어날 것인가 하는 비율을 나타낸다는 겁니다. 같은 에너지 변화에 대해 엔트로피가 더 많이 늘어난다면 $1/T$가 크다는 말이므로, 결국 온도가 낮다는 뜻이 됩니다. 반대로 같은 에너지 변화에 대해 엔트로피가 덜 늘어난다면 온도가 높다는 뜻입니다. 

이와 관련된 그 다음 문장이 흥미롭습니다. "이는 곧 순간적으로 내 손가락 방향으로 에너지가 쏟아져 들어옴으로써 내 세포들을 크게 손상시킬 것이니 내 감각 체계는 이를 경고해 "뜨겁다!"고 비명을 치게 만다는 것이다." 로봇이나 사이보그의 경우에는 이렇게 뜨거운 것을 감지해서 냄비를 놓을 수 있는 메커니즘을 붙이기가 쉽지 않다고 합니다. 어떤 면에서 오랜 시간에 걸치 자연선택의 결과인 셈입니다. 흥미롭게도 2021년 노벨생리의학상이 바로 이러한 뜨거움과 차가움을 감지하는 감각세포의 기제를 밝힌 사람들에게 주어졌습니다.

https://www.nobelprize.org/prizes/medicine/2021/summary/  

위의 그림은 르네 데카르트의 [인간론]에 나오는 그림인데, 여러 모로 의미심장합니다.

전체 1

  • 자연사랑 자연사랑
    2022-06-04 00:03

    이 글에서 사용한 미분법의 두 가지 성질이 있습니다. 어떤 함수를 미분하여 얻어내는 도함수가 0이면 그 점에서 함수의 값이 최소/최대/극대/극소가 됩니다. 그래프로 그리면 마루나 바닥이 됩니다. 두 번째 성질은 도함수가 양수이면 함수는 증가함수이고, 반대로 도함수가 음수이면 함수는 감소함수입니다.


« 볼츠만 인수, 바닥상태와 들뜬 상태
자유 에너지 유도에서 의문점 »
목록보기 답글쓰기
글수정 글삭제
전체 709
  • 전체
  • 자료
  • 질문 및 토론
  • 모임 정리
  • 공지사항
  • 세미나 운영
  • 전체
  • 앎의 바탕 구도
  • 고전역학
  • 상대성이론
  • 양자역학
  • 통계역학
  • 우주와 물질
  • 생명
  • 주체와 객체
  • 앎
  • 온전한 앎
  • 자연철학 일반
  • 전자기학
  • 기타
번호 제목 작성자 작성일 추천 조회
공지사항
심학십도 그림 자료
녹색아카데미 | 2025.04.28 | 추천 1 | 조회 1043
녹색아카데미 2025.04.28 1 1043
공지사항
2025 <양자역학 이해 강독모임> 계획
녹색아카데미 | 2025.04.23 | 추천 0 | 조회 1174
녹색아카데미 2025.04.23 0 1174
공지사항
3기 새 자연철학 세미나 상세 계획
시인처럼 | 2024.09.12 | 추천 0 | 조회 4155
시인처럼 2024.09.12 0 4155
공지사항
[자료] 유튜브 대담영상 "자연철학이야기" 녹취록 & 카툰 링크 모음 (5)
neomay33 | 2023.04.20 | 추천 3 | 조회 13799
neomay33 2023.04.20 3 13799
공지사항
『양자역학을 어떻게 이해할까?』 정오표 (10)
시인처럼 | 2022.12.22 | 추천 3 | 조회 16625
시인처럼 2022.12.22 3 16625
공지사항
[공지] 게시판 카테고리 설정에 대해서 (4)
시인처럼 | 2022.03.07 | 추천 0 | 조회 13227
시인처럼 2022.03.07 0 13227
693
New [자료] 빛에 대한 존재론적 논의
자연사랑 | 2025.05.16 | 추천 0 | 조회 17
자연사랑 2025.05.16 0 17
692
[자료] 빛 입자 또는 빛에 대한 물리학적 논의
자연사랑 | 2025.05.15 | 추천 0 | 조회 46
자연사랑 2025.05.15 0 46
691
빛 입자에 대한 의문.. (5)
PSY | 2025.05.12 | 추천 0 | 조회 91
PSY 2025.05.12 0 91
690
겹실틈 실험, 양자역학 해석의 검증과 실험의 확인 (3)
시지프스 | 2025.05.12 | 추천 2 | 조회 100
시지프스 2025.05.12 2 100
689
[자료]『양자역학을 어떻게 이해할까?』책과 세미나(2023년) 정리 노트 (1)
neomay33 | 2025.05.10 | 추천 0 | 조회 158
neomay33 2025.05.10 0 158
688
[질문/토론] 온도가 크게 올라가면, U≦TS가 되어 F<0이 되는 경우가 있나요?
자연사랑 | 2025.04.18 | 추천 1 | 조회 768
자연사랑 2025.04.18 1 768
687
[나의 질문] 최우석 - '선택의 여지' 그리고 '앎과 실재' (5)
시인처럼 | 2025.04.14 | 추천 0 | 조회 624
시인처럼 2025.04.14 0 624
686
[질문/토론] 대상 물체의 현재 온도가 낮을수록 △S의 값이 크다는 것을 어떻게 증명할 수 있나요?
자연사랑 | 2025.04.14 | 추천 1 | 조회 499
자연사랑 2025.04.14 1 499
685
<장회익의 자연철학 강의>와 범심론 (9)
유동나무 | 2025.03.30 | 추천 2 | 조회 472
유동나무 2025.03.30 2 472
684
[질문] 앎의 세 모드(역학 모드, 서술 모드, 의식 모드)와 포퍼의 세 세계
자연사랑 | 2025.03.24 | 추천 0 | 조회 391
자연사랑 2025.03.24 0 391
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • »
  • 마지막
글쓰기
Powered by KBoard

게시판 글

최신글 내가 쓴 글
N [자료] 빛에 대한 존재론적 논의
2025.05.16
[자료] 빛 입자 또는 빛에 대한 물리학적 논의
2025.05.15
빛 입자에 대한 의문.. (5)
2025.05.12
겹실틈 실험, 양자역학 해석의 검증과 실험의 확인 (3)
2025.05.12
[자료]『양자역학을 어떻게 이해할까?』책과 세미나(2023년) 정리 노트 (1)
2025.05.10
로그인 해주세요.

게시판 댓글

최신댓글 내가 쓴 댓글
N "파동은 무언가의 시공간적 궤적을 말하는 게 아닌가?"라는 질문에 대해 짧은 대답은 "그렇지 않다."입니다. 특정 시간(시각)에 특정 위치에 놓이며, 그럼으로써 시간의 흐름을 따라 보면 모종의 '궤적'을 이루는 것은 언제나 질점(point mass) 내지 입자입니다. 파동은 언제나 시간과 공간에 퍼져 있습니다. 파동을 직관적으로 보기 쉽게 말하기는 어렵습니다. 파동은 근본적으로 '모여 있지 않다'라고 말할 수 있습니다. 물론 파동을 교묘하게 여러 개 모아서 만든 파동다발(波束, wave packet)이 마치 입자처럼 일정한 모양을 유지하면서 시간과 공간 속에서 퍼져나간다고 말하는 것이 가능하긴 하지만, 파동다발을 입자와 같은 것으로 말하는 것은 부적절합니다. 그런데 파동은 결국 진동수와 파장으로 서술되는 것이라서 진동수와 파장의 추상화된 공간(흔히 운동량 공간이라 부릅니다)을 시간-공간에 대응시킬 수 있습니다. 즉 $(t, x)$ 대신 $(\omega, k)$를 쓰면, 이번에는 특정의 파동 하나가 $(\omega, k)$의 '공간'에서 한 점을 차지합니다. 즉 모여 있습니다. 여러 개의 파동이 있다면 이 '운동량 공간'에서 여러 개의 점으로 나타납니다. 대신 '운동량 공간'의 한 점을 우리에게 친숙한 보통의 시간-공간에서 보면 퍼져 있습니다. 그러면 '운동량 공간'에서 퍼져 있는 것은 보통의 시간-공간에서 특정 점에 모여 있는 것으로 나타날까요? 맞습니다. 그렇게 나타납니다. 이것이 <앙자역학을 어떻게 이해할까?> 151-165쪽에 있는 내용의 핵심입니다. [추가: <양자역학을 어떻게 이해할까?>에서는 위치와 운동량의 이중공간뿐 아니라 시간과 에너지의 이중공간도 함께 고려합니다. 시간과 위치가 4차원을 이루는 것처럼, 에너지와 운동량의 이중공간도 4차원을 이룹니다.]
15:25
<양자역학을 어떻게 이해할까?> 19쪽에 언급된 "추가적 관측을 겹실틈 바로 뒤에서가 아니라 식별 스크린 바로 앞에서 수행하는 실험"을 더 정교하게 할 수도 있겠지만, 제 의견에는 이미 기존의 겹실틈 실험 특히 위에 인용한 Bach et al. (2013)에서 어느 정도는 이미 한 셈이라고 생각합니다. 왜냐하면 실험의 에너지 규모를 조절하여 방출되는 전자가 하나씩 나올 수 있도록 한 것이라서, 스크린 바로 앞에서 전자의 위치를 관측한 것과 비슷한 효과가 있기 때문입니다. 아마 이 아이디어를 적용한다면, 실제로 스크린 바로 앞에서 아주 약하게 전자의 위치를 관측하는 실험을 해 볼 수 있을 것입니다. 첨부한 그림은 Bach et al. (2013) 실험의 보충자료에 있는 실험세팅입니다.
2025.05.15
"겹실틈 실험의 실제 실험과 올바른 해석"(https://bit.ly/3ZeRBNv)에 인용한 Bach et al. (2013)의 실험은 겹실틈을 만든 뒤 가림막을 만들어 이동시킵니다. 그렇게 함으로써 두 실틈에 대해 (1) 둘 다 닫힌 경우 (2) 첫 번째 실틈만 열린 경우 (3) 두 실틈 모두 열린 경우 (4) 두 번째 실틈만 열린 경우 (5) 다시 두 실틈 모두 닫힌 경우에 차례로 스크린에 찍히는 점들의 분포를 보여줍니다. Bach, R. et al. (2013) Controlled double-slit electron diffraction. https://iopscience.iop.org/article/10.1088/1367-2630/15/3/033018 "In 1965, Richard Feynman presented a thought experiment to show these features. Here we demonstrate the full realization of his famous thought experiment. By placing a movable mask in front of a double-slit to control the transmission through the individual slits, probability distributions for single- and double-slit arrangements were observed. Also, by recording single electron detection events diffracting through a double-slit, a diffraction pattern was built up from individual events." 리처드 파인만이 1965년에 이 이야기를 할 때만 해도 그냥 사고실험이었지만, 이제는 직접 실험해서 확인할 수 있는 시대가 되었습니다. 위에 인용한 실험도 발표된 지 벌써 12년이 지났습니다.
2025.05.15
불편을 드려서 죄송해요. 최근 정비에 들어가서 짬짬이 홈페이지에 불필요한 파일들을 덜어내고 있어요. 여유를 좀 확보해서 편하게 이용하시도록 해볼께요. 참, 당분간 게시판 글에 첨부되었던 파일과 사진이 잘 보이지 않을 수 있습니다. 용량 확보 작업을 하면서 일부 파일들을 옮겨두어서 그런 건데요, 소실된 것 아니고 잠시 옮겨두어서 그런 거니 당분간의 의도된 에러라는 점 양해해주세요~.
2025.05.13
^^;; 꼭 필요한 문서는 첨부하셔야지요. 책 원문 파일은 용량이 커서 그렇게 말씀드렸어요. 링크를 달면 좋은데 그게 안 되는 경우도 있고 그러네요. 양해 부탁드려요. ㅎㅎ;;;
2025.05.12
로그인 해주세요.

Upcoming Events

5월 19
6:00 오전 - 7:00 오전 KST

책새벽 – 월. 시즌6 : 『침묵의 봄』 4회

5월 20
6:00 오전 - 7:00 오전 KST

책새벽 – 화/금 : 『세계철학사 4 – 탈근대 사유의 지평들』 12회

5월 20
9:00 오후 - 10:00 오후 KST

책밤-화-과학 : 칼 포퍼 『추측과 논박 1』 – 15회

5월 20
10:30 오후 - 11:30 오후 KST

책밤-화-문학-시즌6 : 『잃어버린 시간을 찾아서 5 – 게르망트 쪽 1』 (22회)

5월 21
6:00 오전 - 7:00 오전 KST

책새벽 – 수 : 칼 세이건 『Cosmos』 – 19회

달력보기

카테고리

녹색아카데미 페이스북 공개그룹

녹색아카데미 페이스북 공개그룹

Copyright © 2025 녹색아카데미. All Rights Reserved.

Codilight 테마 제작자 FameThemes