열평형이거나 열평형이 아닌 두 물체의 접촉
[장회익의 자연철학 강의] 277쪽에 있는 내용을 조금 더 설명할 필요가 있어 보입니다. 이를 위해 아래의 책을 참조했습니다.
L.D. Landau, E.M. Lifshitz. Statistical Physics. pp. 34-35. (링크 클릭)
두 물체가 열평형을 이루고 있을 때 엔트로피와 에너지의 관계를 살펴봅니다. 열역학 둘째 법칙이 옳다면, 두 물체로 이루어진 전체계가 고립계일 때 엔트로피는 최대가 되어야 합니다. 한편 전체계의 에너지는 두 부분계의 에너지의 합입니다. 즉 $$E = E_1 + E_2$$입니다. 열역학 첫째 법칙에 따르면 $E$는 상수입니다. 엔트로피는 에너지의 함수로 주어며, 전체계의 엔트로피는 $$S=S_1 (E_1) +S_2 (E_2)$$입니다. $E_2 = E - E_1$이며 $E$는 상수이므로, 실상은 독립변수가 $E_1$ 하나뿐이라고 해도 됩니다. 엔트로피가 최대가 되는 조건은 다음과 같습니다. (최대일 때 도함수가 0) $$ \frac{\mathrm{d}S}{\mathrm{d}E_1}=\frac{\mathrm{d}S_1}{\mathrm{d}E_1} + \frac{\mathrm{d}S_2}{\mathrm{d}E_2} \frac{\mathrm{d}E_2}{\mathrm{d}E_1} =\frac{\mathrm{d}S_1}{\mathrm{d}E_1} - \frac{\mathrm{d}S_2}{\mathrm{d}E_2} = 0$$ 따라서 두 물체가 열평형을 이룰 조건은 $$\frac{\mathrm{d}S_1}{\mathrm{d}E_1} = \frac{\mathrm{d}S_2}{\mathrm{d}E_2}$$입니다. 절대온도를 $$\frac{\mathrm{d}S}{\mathrm{d}E} = \frac{1}{T}$$로 정의하면, 위의 조건은 곧 $$T_1 = T_2$$에 해당합니다.
이제 두 물체가 닫힌 계를 이루지만 열평형은 아닌 경우를 생각합니다. 가령 뜨거운 냄비를 손으로 만질 때와 같은 상황입니다. 그 물체의 온도를 각각 $T_1$, $T_2$라 부를 때, $T_1 \neq T_2$이라 합니다. 시간이 점차 흐르면 두 물체의 온도는 점차 같아질 겁니다. 이 때 엔트로피의 합 $S=S_1 + S_2$는 증가해야 합니다. 따라서 그 도함수는 양수이어야 합니다. 즉 $$\frac{\mathrm{d}S}{\mathrm{d}t}=\frac{\mathrm{d}S_1}{\mathrm{d}t}+\frac{\mathrm{d}S_2}{\mathrm{d}t} = \frac{\mathrm{d}S_1}{\mathrm{d}E_1} \frac{\mathrm{d}E_1}{\mathrm{d}t} + \frac{\mathrm{d}S_2}{\mathrm{d}E_2} \frac{\mathrm{d}E_2}{\mathrm{d}t} > 0$$ 그런데 전체 에너지는 보존되므로 $$ \frac{\mathrm{d}E_1}{\mathrm{d}t} + \frac{\mathrm{d}E_2}{\mathrm{d}t}=0$$이고, 따라서 $$\frac{\mathrm{d}S}{\mathrm{d}t}=\left(\frac{\mathrm{d}S_1}{\mathrm{d}E_1} - \frac{\mathrm{d}S_2}{\mathrm{d}E_2} \right) \frac{\mathrm{d}E_1}{\mathrm{d}t} = \left( \frac{1}{T_1} - \frac{1}{T_2}\right)\frac{\mathrm{d}E_1}{\mathrm{d}t}>0$$을 얻습니다.
만일 $T_1 < T_2$라 하면, $$\frac{\mathrm{d}E_1}{\mathrm{d}t}>0 , \quad \frac{\mathrm{d}E_2}{\mathrm{d}t}<0$$입니다. 즉 시간이 지남에 따라 1번 계의 에너지는 늘어나고 2번 계의 에너지는 줄어듭니다.
[장회익의 자연철학 강의] 277쪽에 "... 에너지가 내 손으로 들어오면 전체 엔트로피는 증가할 상황이니 자연 계는 이 방향의 에너지 흐름을 일으키려 할 것이다."라고 쓰인 구절이 바로 이 내용입니다. 결국 온도라는 것은 에너지의 흐름에 비해 엔트로피가 얼마만큼 늘어날 것인가 하는 비율을 나타낸다는 겁니다. 같은 에너지 변화에 대해 엔트로피가 더 많이 늘어난다면 $1/T$가 크다는 말이므로, 결국 온도가 낮다는 뜻이 됩니다. 반대로 같은 에너지 변화에 대해 엔트로피가 덜 늘어난다면 온도가 높다는 뜻입니다.
이와 관련된 그 다음 문장이 흥미롭습니다. "이는 곧 순간적으로 내 손가락 방향으로 에너지가 쏟아져 들어옴으로써 내 세포들을 크게 손상시킬 것이니 내 감각 체계는 이를 경고해 "뜨겁다!"고 비명을 치게 만다는 것이다." 로봇이나 사이보그의 경우에는 이렇게 뜨거운 것을 감지해서 냄비를 놓을 수 있는 메커니즘을 붙이기가 쉽지 않다고 합니다. 어떤 면에서 오랜 시간에 걸치 자연선택의 결과인 셈입니다. 흥미롭게도 2021년 노벨생리의학상이 바로 이러한 뜨거움과 차가움을 감지하는 감각세포의 기제를 밝힌 사람들에게 주어졌습니다.
https://www.nobelprize.org/prizes/medicine/2021/summary/
위의 그림은 르네 데카르트의 [인간론]에 나오는 그림인데, 여러 모로 의미심장합니다.
번호 | 제목 | 작성자 | 작성일 | 추천 | 조회 |
공지사항 |
심학십도 그림 자료
녹색아카데미
|
2025.04.28
|
추천 1
|
조회 1043
|
녹색아카데미 | 2025.04.28 | 1 | 1043 |
공지사항 |
2025 <양자역학 이해 강독모임> 계획
녹색아카데미
|
2025.04.23
|
추천 0
|
조회 1174
|
녹색아카데미 | 2025.04.23 | 0 | 1174 |
공지사항 |
3기 새 자연철학 세미나 상세 계획
시인처럼
|
2024.09.12
|
추천 0
|
조회 4155
|
시인처럼 | 2024.09.12 | 0 | 4155 |
공지사항 |
[자료] 유튜브 대담영상 "자연철학이야기" 녹취록 & 카툰 링크 모음 (5)
neomay33
|
2023.04.20
|
추천 3
|
조회 13799
|
neomay33 | 2023.04.20 | 3 | 13799 |
공지사항 |
『양자역학을 어떻게 이해할까?』 정오표 (10)
시인처럼
|
2022.12.22
|
추천 3
|
조회 16625
|
시인처럼 | 2022.12.22 | 3 | 16625 |
공지사항 |
[공지] 게시판 카테고리 설정에 대해서 (4)
시인처럼
|
2022.03.07
|
추천 0
|
조회 13227
|
시인처럼 | 2022.03.07 | 0 | 13227 |
693 |
New [자료] 빛에 대한 존재론적 논의
자연사랑
|
2025.05.16
|
추천 0
|
조회 17
|
자연사랑 | 2025.05.16 | 0 | 17 |
692 |
[자료] 빛 입자 또는 빛에 대한 물리학적 논의
자연사랑
|
2025.05.15
|
추천 0
|
조회 46
|
자연사랑 | 2025.05.15 | 0 | 46 |
691 |
빛 입자에 대한 의문.. (5)
PSY
|
2025.05.12
|
추천 0
|
조회 91
|
PSY | 2025.05.12 | 0 | 91 |
690 |
겹실틈 실험, 양자역학 해석의 검증과 실험의 확인 (3)
시지프스
|
2025.05.12
|
추천 2
|
조회 100
|
시지프스 | 2025.05.12 | 2 | 100 |
689 |
[자료]『양자역학을 어떻게 이해할까?』책과 세미나(2023년) 정리 노트 (1)
neomay33
|
2025.05.10
|
추천 0
|
조회 158
|
neomay33 | 2025.05.10 | 0 | 158 |
688 |
[질문/토론] 온도가 크게 올라가면, U≦TS가 되어 F<0이 되는 경우가 있나요?
자연사랑
|
2025.04.18
|
추천 1
|
조회 768
|
자연사랑 | 2025.04.18 | 1 | 768 |
687 |
[나의 질문] 최우석 - '선택의 여지' 그리고 '앎과 실재' (5)
시인처럼
|
2025.04.14
|
추천 0
|
조회 624
|
시인처럼 | 2025.04.14 | 0 | 624 |
686 |
[질문/토론] 대상 물체의 현재 온도가 낮을수록 △S의 값이 크다는 것을 어떻게 증명할 수 있나요?
자연사랑
|
2025.04.14
|
추천 1
|
조회 499
|
자연사랑 | 2025.04.14 | 1 | 499 |
685 |
<장회익의 자연철학 강의>와 범심론 (9)
유동나무
|
2025.03.30
|
추천 2
|
조회 472
|
유동나무 | 2025.03.30 | 2 | 472 |
684 |
[질문] 앎의 세 모드(역학 모드, 서술 모드, 의식 모드)와 포퍼의 세 세계
자연사랑
|
2025.03.24
|
추천 0
|
조회 391
|
자연사랑 | 2025.03.24 | 0 | 391 |
이 글에서 사용한 미분법의 두 가지 성질이 있습니다. 어떤 함수를 미분하여 얻어내는 도함수가 0이면 그 점에서 함수의 값이 최소/최대/극대/극소가 됩니다. 그래프로 그리면 마루나 바닥이 됩니다. 두 번째 성질은 도함수가 양수이면 함수는 증가함수이고, 반대로 도함수가 음수이면 함수는 감소함수입니다.